Early Stage Botnet Detection and Containment via Mathematical Modeling and Prediction of Botnet Propagation Dynamics
نویسندگان
چکیده
The research that we discuss in this technical report shows that mathematical models of botnet propagation dynamics are a viable means of detecting early stage botnet infections in an enterprise network, and thus an effective tool for containing those botnet infections in a timely fashion. The main idea that underlies this research is to localize weakly connected subgraphs within a graph that models network communications between hosts, consider those subgraphs as representatives of suspected botnets, and thus employ applied statistics to infer the underlying propagation dynamics. The inferred dynamics are materialized into a model graph, which we use within a subgraph isomorphism search process to determine whether or not there is a match between the inferred propagation dynamics and the actual propagation dynamics observed from the weakly connected subgraphs. We conduct modeling based on an intersection of statistics and graph theory such as a match between the two leads to a timely identification of infected hosts. Our mathematical modeling relies on measures of network vulnerability rates, which in this research we estimate via a statistical approach that draws on epidemiological models in biology. That estimation approach is based on random sampling and follows a novel application of statistical learning and inference in a botnet-versus-network setting. We have implemented this overall research in the Matlab and Perl programming languages, and thus have validated its effectiveness in practice in the Emulab network testbed. We have also validated the vulnerability rate estimation approach extensively with respect to realistically simulated botnet propagation dynamics in a GTNetS network simulation platform. In the technical report we describe our overall approach in detail, and thus discuss experiments along with experimental data that are indicative of the effectiveness of our overall approach to detect early stage botnet infections in an enterprise network.
منابع مشابه
BotOnus: an online unsupervised method for Botnet detection
Botnets are recognized as one of the most dangerous threats to the Internet infrastructure. They are used for malicious activities such as launching distributed denial of service attacks, sending spam, and leaking personal information. Existing botnet detection methods produce a number of good ideas, but they are far from complete yet, since most of them cannot detect botnets in an early stage ...
متن کاملBotRevealer: Behavioral Detection of Botnets based on Botnet Life-cycle
Nowadays, botnets are considered as essential tools for planning serious cyberattacks. Botnets are used to perform various malicious activities such as DDoSattacks and sending spam emails. Different approaches are presented to detectbotnets; however most of them may be ineffective when there are only a fewinfected hosts in monitored network, as they rely on similarity in...
متن کاملAdaptive pattern mining model for early detection of botnet-propagation scale
Botnets are a disastrous threat because they execute malicious activities such as distributed denial-of-service, spam email, malware downloads (such as eggdownloads), and spying by exploiting zombie PCs under their control. Botnets infect PCs on a huge scale by initially scanning the service ports of vulnerable applications for the purpose of propagation, which is leveraged as the size of the b...
متن کاملModeling Social Engineering Botnet Dynamics across Multiple Social Networks
In recent years, widely spreading botnets in social networks are becoming a major security threat to both social networking services and the privacy of their users. In order to have a better understanding of the dynamics of these botnets, defenders should model the process of their propagation. However, previous studies on botnet propagation model have tended to focus solely on characterizing t...
متن کاملModeling Botnet Propagation Using Time Zones
Time zones play an important and unexplored role in malware epidemics. To understand how time and location affect malware spread dynamics, we studied botnets, or large coordinated collections of victim machines (zombies) controlled by attackers. Over a six month period we observed dozens of botnets representing millions of victims. We noted diurnal properties in botnet activity, which we suspec...
متن کامل